大连迪爱帝传感器有限公司
全国免费预订热线

0411-87644309

站内公告:

工作时间:8:00~17:00      休息日:星期六、星期日以及节假日

当前位置:首页>

光电效应(四)

2025-05-09

分类

光电效应分为:外光电效应和内光电效应。
内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。
外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。

外光电效应

在光的作用下,物体内的电子逸出物体表面向外发射的现象叫做外光电效应。
外光电效应的一些实验规律
a.仅当照射物体的光频率不小于某个确定值时,物体才能发出光电子,这个频率叫做极限频率(或叫做截止频率),相应的波长λ0叫做极限波长。不同物质的极限频率和相应的极限波长λ0 是不同的。
一些金属的极限波长(单位:埃):

b.光电子脱出物体时的初速度和照射光的频率有关而和发光强度无关。这就是说,光电子的初动能只和照射光的频率有关而和发光强度无关。
c.在光的频率不变的情况下,入射光越强,相同的时间内阴极(发射光电子的金属材料)发射的光电子数目越多
d.从实验知道,产生光电流的过程非常快,一般不超过10的-9次方秒;停止用光照射,光电流也就立即停止。这表明,光电效应是瞬时的。
e.爱因斯坦方程:hν=(1/2)mv^2+I+W
式中(1/2)mv^2是脱出物体的光电子的初动能。金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,I项可以略去,爱因斯坦方程成为 hυ=(1/2)mv^2+W 假如hυ极限频率) u0。由 hυ0=W确定。相应的极限波长为λ0=C/υ0=hc/W。 发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。算式在以爱因斯坦方式量化分析光电效应时使用以下算式: 光子能量= 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ+Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s, f是入射光子的频率,φ是功函数,从原子键结中移出一个电子所需的最小能量, f0是光电效应发生的阀值频率,Em是被射出的电子的最大动能, m是被发射电子的静止质量, v是被发射电子的速度
注:如果光子的能量(hf)不大于功函数(φ),就不会有电子射出。功函数有时又以W标记。这个算式与观察不符时(即没有射出电子或电子动能小于预期)。爱因斯坦因成功解释了光电效应而获得1921年诺贝尔物理学奖。
基于外光电效应的电子元件有光电管、光电倍增管。光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。

内光电效应

当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。
1 光电导效应
在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。
当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。
基于这种效应的光电器件有光敏电阻。
2 光生伏特效应
"光生伏特效应",简称"光伏效应"。指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。
光伏发电,其基本原理就是"光伏效应"。太阳能专家的任务就是要完成制造电压的工作。因为要制造电压,所以完成光电转化的太阳能电池是阳光发电的关键。
简单来说就是在光作用下能使物体产生一定方向电动势的现象。基于该效应的器件有光电池和光敏二极管、三极管
势垒效应(结光电效应)
光照射PN结时,若hf≧Eg,使价带中的电子跃迁到导带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向N区外侧,空穴偏向P区外侧,使P区带正电,N区带负电,形成光生电动势。
②侧向光电效应(丹培效应)
半导体光电器件受光照不均匀时,光照部分产生电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负电,从而产生电动势,即为侧向光电效应。
③光电磁效应
半导体受强光照射并在光照垂直方向外加磁场时,垂直于光和磁场的半导体两端面之间产生电势的现象称为光电磁效应,可视之为光扩散电流的霍尔效应
④贝克勒耳效应
是指液体中的光生伏特效应。当光照射浸在电解液中的两个同样电极中的一个电极时,在两个电极间产生电势的现象称为贝克勒耳效应。感光电池的工作原理基于此效应。
⑤紫外线光电效应
当紫外线照射到某些金属的表面时,金属内部的自由电子逸出金属表面,这种紫外线的光致电子发射构成了紫外线光电效应的内容之一。早在1887年德国物理学家(1857~1894)在研究紫外线辐射时,首先发现光电发射现象。在1888年光电发射有被俄国物理学家斯托列托夫(1839~1896)用实验证明了这一现象。
3 光子牵引效应
当光子与半导体中的自由载流子作用时,光子把动量传递给自由载流子,自由载流子将顺着光线的传播方向做相对于晶格的运动。结果,在开路的情况下,半导体样品将产生电场,它阻止载流子的运动。这个现象被称为光子牵引效应。

量子解释

1905年,爱因斯坦把普朗克的量子化概念进一步推广。他指出:不仅黑体和辐射场的能量交换是量子化的,而且辐射场本身就是由不连续的光量子组成,每一个光量子的能量与辐射场频率之间满足ε=hν,即它的能量只与光量子的频率有关,而与强度(振幅)无关。
爱因斯坦光电效应方程
根据爱因斯坦的光量子理论,射向金属表面的光,实质上就是具有能量ε=hν的光子流。如果照射光的频率过低,即光子流中每个光子能量较小,当他照射到金属表面时,电子吸收了这一光子,它所增加的ε=hν的能量仍然小于电子脱离金属表面所需要的逸出功,电子就不能脱离开金属表面,因而不能产生光电效应。如果照射光的频率高到能使电子吸收后其能量足以克服逸出功而脱离金属表面,就会产生光电效应。此时逸出电子的动能、光子能量和逸出功之间的关系可以表示成:光子能量- 移出一个电子所需的能量(逸出功)=被发射的电子的最大初动能。
即:Εk(max)=hv-W0
这就是爱因斯坦光电效应方程。
其中,h是普朗克常数;v是入射光子的频率
功函数
Φ是功函数,指从原子键结中移出一个电子所需的最小能量,表达式如右图,其中f0是光电效应发生的阀值频率,即极限频率;功函数有时又以W或A标记。
动能表达式
E(kmax)是逸出电子的最大动能,如右图;m是被发射电子的静止质量;vm是被发射电子逸出时的初速度。
注:这个算式与观察不符时(即没有射出电子或电子动能小于预期)。
实验电路
根据爱因斯坦光量子理论,光电效应中光电子的能量决定于照射光的频率,而与照射光的强度无关,故可以解释实验规律的第一、第二两条。其中的极限频率是指光量子的能量刚好满足克服金属逸出功的光量子频率,而不同的金属电子逸出所需要的能量不同,所以不同金属的极限频率不同。对第三条,由于当光量子的能量足够,不管光强(只决定于光量子的数目)如何,电子在吸收了光量子后都可马上逸出,故可立即产生光电效应,不需要积累过程。当光照射到金属表面时,其强度越大表明光量子数越多,它被金属中电子吸收的可能性越大,因此就可以解释为什么被打出的电子数只与光的强度有关而与光的频率无关。

版权所有:大连迪爱帝传感器有限公司 电话:0411-87644309

地址:辽宁省大连保税区ID-35-3号五层 ICP备案编号:辽ICP备2023003440号-1 技术支持:奇思锐盟网络 [奇思锐盟建站]